Author: Ian Smith (Cambridge University, UK)

$$O(^{3}P) + C_{2}(^{1}\Sigma_{g}^{+}) \rightarrow CO(^{1}\Sigma_{g}) + C(^{3}P)$$
 (1)

Thermodynamic Data

$$\Delta H^{o}_{298}(1) = -480.8 \text{ kJ mol}^{-1}$$

Thermochemical data are taken from ref. (*)

Rate Coefficient Data k

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Comments
Rate Coefficient Measurements			

The only measurement that I can find (NIST database) is a shock tube study dating from 1969 giving a rate constant (6×10^{-10} cm³ molecule⁻¹ s⁻¹) at 8000 K.

Reviews and Evaluations

Baulch et al., 2005	(*)	
	Baulch et al., 2005	Baulch <i>et al.</i> , 2005 (*)

1.0×10^{-10}	10 – 300	UMIST database
1.0×10^{-10}	no T-dependence	OSU website

Comments

This reaction is highly exothermic and spinallowed. I think that it is likely to be very fast. Unfortunately there are no measurements even at room temperature, never mind lower. It could probably be studied using the combined flowtube/pulsed photolysis used to study O + OH and N + OH but no-one has attempted this.

Preferred Values

$$k(298 \text{ K}) = 2.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(10 \text{ K}) = 3.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
 $k(T) = 2.0 \times 10^{-10} (\text{T}/300)^{-0.12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Reliability

$$\Delta \log k_1 (298 \text{ K}) = \pm 0.5$$

 $\Delta \log k_1 (10 \text{ K}) = \pm 0.5$
 $F_0 = 3$; $g = 0$

Comments on Preferred Values

I recommend values higher than those in the UMIST and Ohio databases but give wide uncertainties (factor of 3).

References

(*) D. L. Baulch et al., J. Phys. Chem. Ref. Data 34, 575 (2005).